Biopsy and Staging of Musculoskeletal Neoplasms

James C. Wittig, MD Associate Professor of Orthopedic Surgery Chief, Orthopedic Oncology Mount Sinai Medical Center

Definitions

Bone / Soft tissue tumors (Primary)
Mesenchymally derived tumors (Mesodermal)
Benign or Malignant (Sarcoma)
Sarcoma=fleshy (Greek), fish flesh
Sarcoma—ability to metastasize

systemically and invade locally

Classification

- Derived from primitive pluripotential mesenchymal cell
- Pluripotential mesenchymal cell can form
 - Bone
 - Cartilage
 - Fibrous Tissue
 - Lipogenic
 - Blood Vessels
 - Nervous tissue
 - Small Round Blue Cells

Classification

- Bone and soft tissue tumors are classified according to the predominant type of tissue (Pattern of Differentiation)
- Important to think in terms of these categories when evaluating
- Unique findings on imaging studies and pathology
- Specific types of tumors in each age group and anatomic site

Histologic Type*	Benign	Malignant
Hematopoietic (41.4%)		Myeloma Reticulum cell sarcoma
Chondrogenic (20.9%)	Osteochondroma Chondroma Chondroblastoma Chondromyxoid fibroma	Primary chondrosarcoma Secondary chondrosarcoma Dedifferentiated chondrosarcoma Mesenchymal chondrosarcoma
Osteogenic (19.3%)	Osteoid osteoma Benign osteoblastoma	Osteosarcoma Parosteal osteogenic sarcoma
Unknown origin (9.8%)	Giant cell tumor	Ewing's tumor Malignant giant cell tumor Adamantinoma
	(Fibrous) histiocytoma	(Fibrous) histiocytoma
Fibrogenic (3.8%)	Fibroma Desmoplastic fibroma	Fibrosarcoma
Notochordal (3.1%)	50	Chordoma
Vascular (1.6%)	Hemangioma	Hemangioendothelioma Hemangiopericytoma
Lipogenic (<0.5%)	Lipoma	
Neurogenic (<0.5%)	Neurilemmoma	3

Natural History

Benign

- Latent
- Active
- Aggressive
- Malignant
 - Low Grade
 - Intermediate
 - High Grade

- Sarcomas grow locally in a centrifugal manner
- Form "Ball –Like" masses
- Periphery is least mature
- Benign aggressive and malignant tumors compress adjacent tissue into a pseudocapsular layer
- Pseudocapsular layer-microscopic extension of main tumor mass (satellite nodules)

Pseudocapsule: 2 zones

- Compressed tumor cells
- Fibrovascular zone of reactive tissue with an inflammatory component that interdigitates with normal tissue—contains satellite lesions
- True capsule—surrounds a benign lesion; composed of compressed normal cells and mature fibrous tissue

 Surgical resection must include the pseudocapsule to ensure removal of the entire lesion

 Skip metastasis: High grade sarcomas have the ability to break through the pseudocapsule and metastasize within the same compartment

High Grade Bone Sarcomas

- Intraosseous Skip Mets---embolization of tumor cells within the marrow sinusoids
- Transarticular Skip Mets---occur via periarticular venous anastomoses

Clinical Incidence of Skip Mets<1%
Very poor prognosis (0% cure)

 Sarcomas have the ability to metastasize systemically—hematogenously
 (contradistinction to carcinomas—lymphatic spread primarily)

Most common sites:

- Lungs
- Bones
- Liver (primarily retroperitoneal soft tissue sarc)

- Low Grade tumors—mets<5-10%</p>
- High grade lesions mets 60%-100%
- Some benign aggressive lesions can metastasize to the lungs, other bones
 - (rare event)
 - Giant Cell Tumor
 - Chondroblastoma

 Multicentricity: Multiple bony sites at presentation (??synchronous mets)

GCT, Osteosarcoma, Ewings

Reactive Zone or Pseudocapsule Tumor Compressing Muscle and Infiltrating between Muscle Fibers

High Grade Sarcoma After Good Respose to Chemotherapy: the Pseudocapsule is Converted to a True Fibrous Capsule

Local Growth of Sarcomas

- Local growth obeys fascial borders/compartmental borders
- Fascial borders resist tumor penetration
- Compartment refers to the bone or muscle of origin; muscle compartment surrounded by fascia (investing fascia on all sides resists tumor penetration)
- When a bone tumor destroys the cortex and spreads into the surrounding soft tissue---extracompartmental

 Bone Tumors that extend extracompartmental compress the surrounding muscles into a pseudocapsule

(the fascia of the surrounding muscle usually contains the tumor and protects other muscles and structures)

- Distal Femur: Vastus Intermedius
- Proximal Tibia: Popliteus
- Proximal Humerus: Subscapularis
- Scapula: Rotator Cuff

Soft Tissue Sarcomas

- Intramuscular---if extends beyond fascia extracompartmental
- Intermuscular—extracompartmental

GCT Proximal Tibia

Popliteus (Pseudocapsule)

Staging

Purpose

- Determine tumor type
- Determine prognosis
- Guide treatment
- Compare results between study groups
- Delineate extent of local and distant disease

Staging Studies

- Plain Radiograph
- MRI
- CT scan
- Chest CT
- Bone Scan

Plain Radiographs

- Rate of tumor growth
- Tumor interaction with surrounding nonneoplastic tissue
- Internal composition of tumor

Plain Radiographs

- Bone involved
- Is involved bone normal?
- What part of the bone?
- Open or closed growth plate
- Epicenter of lesion (cortex or medullary canal)
- Tumor contour and zone of transition between tumor and host bone

Plain Radiographs

- Mineralized matrix?
- Cortical destruction?
- Periosteal reaction? What type
- Involvement of joint space?
- Tumor multifocal?
- Is tumor of uniform appearanceor does it have several different components?

1 C 1 B

SIMPLIFIED RADIOLOGIC GRADING OF BONE TUMORS*

Gr	ade
~	mene

Radiologic Features

Low grade, nonaggressive

Medium grade, moderately aggressive

High grade, very aggressive

Geographic destruction with sclerotic rim

Geographic destruction, no sclerotic rim, and/or cortex "expanded" more than 1 cm or completely penetrated

Moth-eaten and/or permeative destruction only

Continuous

Single lamellar

Onion-skin

Spiculated

Interrupted

Buttress

Codman's triangle

Lamellar

Spiculated

Geographic

Permeative with Mineralization and Cortical Destruction

Geographioc

Permeative with Calcifications in a Ring and Arc-like Manner

Geographic Lesion

Permeative with Cortical Destruction and Soft Tissue Mass

Hair on End and Codman's Triangle Periosteal Reactions

Geographic Lesion Intracortical Continuous Periosteal Reaction/Cortical Thickening

Geographic Lesion

Geographic Lesion

Permeative Lesion with Ossification, Cortical Destruction and Codman's Triangle

MRI

- Evaluates entire bone and adjacent joint
- Best test for intraosseous extent and soft tissue extent
- Skip mets
- Proximity to vascular structures
- Occasionally helpful in diagnosis of bone or soft tissue tumors (experienced radiologist)

CT

- Good for evaluating cortical details and destruction
- Subtle cortical erosions (endosteal;periosteal)
- Calcifications / ossification

Fluid-Fluid Levels: Anuerysmal Bone Cyst Changes

Soft Tissue Extent and Fluid-Fluid Level

Bone Scan

Whole body bone scan
Sites of bony mets
Active lesion??

Chest CT

Presence of metastatic disease

Biopsy

- CT guided or Open
- Through one compartment'
- Avoid neurovascular structures
- Biopsy soft tissue component
- Biopsy by surgeon who will perform procedure or by radiologist after communication with surgeon
- Tumors with necrosis and hemnorrhage

Benign Staging System (Enneking) Stage 1: Latent Grow slowly with growth of individual and then stop; tendency to heal spontaneously (ex. NOF; UBC) Stage 2: Active **Progressive growth** Stage 3: Aggressive

		Stagin	g	
Maligna	ant Bone	Tumors		
TNM St	aging Syst	em (AJC)		
<u>Stage</u>	<u>Grade</u>	<u>Tumor</u>	<u>Node</u>	<u>Mets</u>
IA	G1,2	T1	N 0	M 0
IB	G1,2	T2	N 0	M 0
IIA	G3,4	T1	N 0	M 0
IIB	G3,4	T2	N 0	M 0
III Unde	efined for bo	ne tumors		
IVA	Any G	Any T	N1	MO
IVB	Any G	Any T	Any N	M 1

Enneking Staging System Malignant Bone Tumors Grade **Stage** Site IA **G1 T1** B **G1 T2 T1 G2** IB **G2 T2** Mets Mets

(based on biological behavior)

Biological Behavior / Natural History G1 G2

LG Chondrosarcoma Chondrosarcoma Secondary Chondrosarc Osteosarcoma Parosteal Osteosarcoma Sarcoma/PNET Adamantinoma High Grade

Conventional

Ewing's

MFH Angiosarcoma

Soft Tissue Sarcomas
Important Prognostic Characteristics
Tumor Size (>5cm, worse prognosis)
Tumor Depth (Deep, worse prognosis)
Grade (High grade, worse prognosis)
Presence of Mets

Malignant Tumors TNM Staging System (AJC)

Stage	Grade	Tumor	Node	Mets
IA	G1,2	T1a-b	N 0	M 0
IB	G1,2	T2a	N 0	M 0
IIA	G1,2	T2b	N 0	M 0
IIB	G3,4	T1a-b	N 0	M 0
IIC	G3-4	T2a	N 0	M 0
III	G3,4	T2b	N 0	M 0
IVA	Any G	Any T	N1	M 0
IVB	Any G	Any T	Any N	M 1

Soft Tissue Sarcomas (Biological Behavior)

- Tumors that are definitionally high grade
 - Ewing's Sarcoma
 - PNET
 - Rhabdomyosarcoma
 - Angiosarcoma
 - Pleomorphic Liposarcoma
 - Soft Tissue Osteosarcoma
 - Mesenchymal Chondrosarcoma

Soft Tissue Sarcomas (Biological Behavior)
 Tumors that are definitionally low grade
 Well Differentiated Liposarcoma
 Dermatofibrosarcoma Protuberans
 Infantile Fibrosarcoma
 Angiomatoid MFH

Soft Tissue Sarcomas

Tumors not gradable but which metastasize often

- Alveolar soft part sarcoma
- Clear cell sarcoma
- Epitheloid sarcoma
- Synovial sarcoma
- Low grade fibromyxoid sarcoma

Soft Tissue Sarcomas

- Tumors of varying behavior—grading may be useful
 - Myxoid liposarcoma
 - Leiomyosarcoma
 - MPNST
 - Fibrosarcoma
 - Myxoid MFH

Soft Tissue Sarcomas

- Tumors of varying behavior—grading parameters not yet established
 - Hemangiopericytoma
 - Myxoid chondrosarcoma
 - Malignant granular cell tumor
 - Malignant mesenchymoma

Evaluating Response to Chemotherapy

Sarcoma of Biceps

Pseudocapsule after Chemotherapy

